《物质的变化和性质》优秀教学设计
1、教材分析
案例章节:《义务教育课程标准实验教科书(人教版)》上册第一单元课题物质的变化与性质
内容分析:本课题结合学生日常生活的一些典型事例,并通过实验、观察记录分析等活动,帮助学生建立物理变化和化学变化的概念。透过化学变化时发生的现象揭示和抓住化学变化的特征,从而初步理解物理性质和化学变化的概念,了解化学学科研究问题的角度和方法。
教学方法:问题教学、实验探究
在学生学习化学课程之前,学生已经接触过大量的化学变化实例,只不过他们对物理变化、化学变化及他们的区别没有思考过,对化学变化的本质特征没有根本的认识。因此本节课的基本任务就是要帮助学生建立物理变化、化学变化、物理性质和化学性质的概念。
本课题位于九年级化学上册起始部分,是学生接触到的第一个化学实验。学生刚接触化学不久,对化学学科只有一个初步印象,知道什么是化学,但是怎样研究、利用什么方法研究物质并不清楚。在毫无化学基础、从来没接触化学实验的前提下,如何正确演示实验、引导学生观察实验现象,引导学生透过现象看本质将是重要环节。同时在这节课中,学生将会与化学实验第一次亲密接触,怎么进行实验,科学探究的方法是什么,将会直接影响到学生以后实验探究的学习。
3.教学目标分析
知识与技能:了解物理变化和化学变化的概念及区别,并能运用概念判断一些易分辨的典型的物理变化和化学变化;了解物理性质和化学性质的概念并能分清哪些是物理性质,哪些是化学性质。
过程与方法:通过对实验现象的观察和分析,学会归纳整理;用化学知识解释日常生活中的一些变化,激发学习化学的兴趣。
情感态度与价值观:激发兴趣,培养学习的自觉性和主动性;培养严谨务实的科学作风。
4.教学重难点
物理变化、化学变化的概念;物理变化、化学变化的判断
拓展阅读
1、分数的基本性质教学设计
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
三、教学准备
课件、正方形的纸
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷( )=12
被除数÷除数=( )
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
2、分数的基本性质教学设计
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。
教学重、难点:
理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。
一、复习旧知,了解学习起点
二、创设情境,激趣引入
课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。” 菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?
三、探究新知,揭示规律
1.动手操作,形象感知。
(1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。
(2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。
(3)剪。把圆中的阴影部分剪下来。
(4)比。把剪下的阴影部分重叠,比一比结果怎样。
2.观察比较,探究规律。
(1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书、、。)
(2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。
学生汇报后,教师用电脑演示。
把3块同样大小的饼分别平均分成2份、4份、6份,依次表示、、。把、、平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”
(3)既然他们3个吃的同样多,那么、、的大小怎样?我们可以用什么符号把他们连接起来?(板书==。)
(4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)
(5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)
讨论题:
①它们之间有什么关系?它们的什么变了?什么没有变?
②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?
(6)学生汇报,师生讨论情况。
师:这3个分数是相等的关系。可以写成==,它们的分子、分母变了,而分数的大小没有变。
师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)
从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较=,=,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(7)抓住焦点,辨中求真。
的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。
3、分数的基本性质教学设计
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
重点难点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。
教具学具: 课件,每人一张白纸,一张圆纸片,彩笔
教学时间:1课时
一、复习引入
1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
除法与分数之间有什么联系?
被除数÷ 除数=被除数/除数
二、动手操作
(1)用分数表示涂色部分。
( )
( ) )
( ) )
①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。
②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)
③继续折成16份,看看原来的3/4现在又成了?(12/16)
(2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!
(教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分数表示涂色部分。
( ) )
( ) )
( ) )
根据上面的过程,你能得到一组相等的分数吗?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、发现规律
1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成上面的图形,再在小组内交流。
学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。
3/4=6/8=12/16 8/12=4/6=2/3
从这些数字中可以得出:
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)
教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?
得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。
3、课件出一组分数让学生练习填
2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、练一练(课件出示)
1、判断.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )
( 4)把3/5的分子加上4,要使分数的大小不变,分母加4。 ( )
2、把5 /6和1/4都化成分母是*小不变的分数。(课件出示 )
3、数学游戏(课件出示)
说出相等的分数 1/4和2/8
(1)你能根据分数的基本性质,再写出一组相等的分数?
所写的分数是否相等?你是怎样想的?
(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
五、课本练习中的第1,2题。
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
七、板书设计:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
4、分数的基本性质教学设计
1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
长方形纸片、彩笔、各种分数卡片。
一、创设情境,激发兴趣
1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。
【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴*急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴*三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和*的同样多。”】
“同学们,猴王真的分得不公平吗?”
二、动手操作、导入新课
同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。
任选一小组的同学台前展示实验报告,并汇报结论。
教师根据学生汇报板书:14=28=312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。
3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母,分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。
三、比较归纳,揭示规律。
请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答板书:同时乘上相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以)
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65(生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12(生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34(生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x(生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?
三、回归书本,探源获知
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35=3×( )5×( )=9( )
824=8÷( )24÷( )=( )3
学生口答后,要求说出是怎样想的?
转载请注明出处:https://www.zsip.cn/articles/37045.html